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Abstract

Keyword-based searches are today’s standard in digital libraries.
Yet, complex retrieval scenarios like in scientific knowledge bases,
need more sophisticated access paths. Although each document
somewhat contributes to a domain’s body of knowledge, the ex-
act structure between keywords, i.e., their possible relationships,
and the contexts spanned within each single document will be
crucial for effective retrieval. Following this logic, individual docu-
ments can be seen as small-scale knowledge graphs on which graph
queries can provide focused document retrieval. We implemented
a full-fledged graph-based discovery system for the biomedical
domain and demonstrated its benefits in the past. Unfortunately,
graph-based retrieval methods generally follow an ’exact match’
paradigm, which severely hampers search efficiency, since exact
match results are hard to rank by relevance. This paper extends our
existing discovery system and contributes effective graph-based
unsupervised ranking methods, a new query relaxation paradigm,
and ontological rewriting. These extensions improve the system
further so that users can retrieve results with higher precision and
higher recall due to partial matching and ontological rewriting.
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1 Introduction

This article is extended by our technical report [7] that describes
and discusses related work, our method and evaluation in more de-
tail. Digital libraries usually implement document retrieval through
simple-to-use keyword-based access paths. However, in complex
retrieval scenarios like for scientific documents, the use of learning
architectures to learn the relevance between a user’s query and
individual textual documents can severely boost retrieval perfor-
mance [1, 2, 9, 12]. In a nutshell, such systems use a first stage for
initial retrieval and then apply strategies like neural re-ranking or
learning-to-rank to estimate the relevance of documents, e.g., [2, 9,
12-14, 21]. Although these approaches proved to be very effective
on different benchmarks, they come with two major limitations:
First, a large quantity of training data needs to be provided to learn
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how the documents’ relevance relates to individual queries. Sec-
ond, applying deep learning in large-scale scenarios is quite costly:
acquiring training data, training time, hardware, etc.

Building on the success of large knowledge graphs, a viable al-
ternative is to adapt the graph-based retrieval paradigm to IR-style
document retrieval. In the past, we proposed so-called narrative
query graphs, see [5, 6] and www.narrative.pubpharm.de for an im-
plementation in the field of bio-medicine. Here, users can represent
information needs as directed edge-labeled graphs. This intuitive
kind of querying means simply stating relevant concepts and their
interactions and can be supported by suitable user interfaces [5].
The resulting query graph representation is then matched against
a large set of focused document graphs, each individually extracted
from some document in the digital library. In contrast to traditional
knowledge graph querying, where all extracted information is in-
tegrated into one big knowledge graph, document-centered graph
query processing ensures the validity of results through context-
compatible information fusion [3]. That means that narrative graph
queries are only answered in strict document contexts, i.e., by fusing
statements mentioned within the scope of a single document. How-
ever, the graph-based retrieval approach also suffers from a severe
limitation: queries are isomorphically matched against document
graphs, i.e., all correct answers show the same level of relevance.

So, how can graph-based document representations be effectively
ranked for document retrieval purposes? This paper extends our
existing system by introducing novel ranking strategies that 1) in-
telligently exploit the structure of document graph representations
and 2) effectively increase the retrieval recall through a relaxed
query matching paradigm (Partial Matches) and ontological query
rewriting. Moreover, our methods do not rely on supervision and
can thus be deployed without requiring costly training data. In addi-
tion to our graph-based discovery system’s benefits like structured
literature overviews, see [5] for a comprehensive overview, this
paper proposes graph-based ranking methods and query relaxation
strategies to improve such a system significantly, in terms of preci-
sion and recall. We share our code, produced results and detailed
topic-wise evaluation figures at GitHub! and Software Hertiage?.

!https://github.com/HermannKroll/RankingNarrativeQueryGraphs
2Software Heritage ID:swh:1:dir:56036430260e275%be3acob72f6160fed361f503
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Figure 1: Systematic overview: Users formulate their information needs as graph patterns between concepts. Queries are
translated and matched against document graphs. Matches are documents that match the query completely (full match) or
partially (partial match). The matched documents are then ranked based on their graphs.

2 Graph-based Discovery System

Our and PubPharm’s (German specialized information service for
pharmacy) graph-based retrieval service, called the Narrative Ser-
vice [5] (https://narrative.pubpharm.de), currently features approx.
37 million publications from the National Library of Medicine’s
Medline collection and 70k COVID-19 pre-prints from ZB MED’s
preVIEW service [8]. Users are enabled to intuitively formulate their
information needs as graph patterns, i.e., conjunctions of triple-
like statements (concept, interaction, concept). Correct answers
to the query are all documents that contain all search statements.
For the query processing, document texts are transformed into a
graph representation by linking terms against biomedical concepts
and extracting their interactions through the PathIE method [4].
association statements were extracted if two concepts were men-
tioned within the same sentence. Concepts were identified by de-
riving annotations from the PubTator service [22, 23] and perform-
ing a dictionary-based linking through vocabularies derived from
ChEBML [11], Wikidata [20] and the Medical Subject Headings.

Formally, C is the set of known concepts (e.g., Metformin, Di-
abetes), and ¥ is the set of known interactions (e.g., associated,
treats, inhibits). A statement is an triple (c1, p1, c2) with¢1,¢2 € C
and p; € ¥ . Each document is represented by its so-called docu-
ment graph, which is harvested from its title and abstract. A docu-
ment graph graph(d) is a directed, edge-labeled graph extracted
from the corresponding document d. Please note that an edge could
be extracted from several sentences of d. Each of these extractions
comes with a confidence score, e.g., the applied extraction method
PathIE defines confidence over the distance between two concepts
in the grammatical structure of a sentence. The Narrative Service al-
lows users to formulate their information needs as narrative query
graphs [5]. A narrative query consists of a set of fact patterns. A
fact pattern is a triple (s, p, 0). The subject s and object o are either
concepts from C or variables from a set V. The fact patterns are
understood as being logically connected via an AND expression. If
the narrative query graph does not ask for variables, matches to
the query are documents that contain all searched (s, p, 0) triples in
their document graph. If a narrative query graph contains variables,
a document d matches the query if 1) the function yy : V — C
substitutes the query’s variables with concrete concepts from C
and 2) the resulting, substituted graph with concrete concepts is
supported by the document graph of d.

3 Graph-based Retrieval and Ranking

This article contains the central ideas of our ranking methods. Core
steps are 1) query translation, 2) result ranking and 3) query relax-
ation. For a detailed description, we refer the reader to [7].

3.1 Query Translation

In this paper, we improve the query translation process as follows:
First, all concepts containing the searched term in one of the syn-
onyms are now considered relevant. The advantage is that it does
not matter whether the user enters diabetes mellitus or mellitus
diabetes. We implement the strategy by using a relational database
table that maps terms to concepts. In the case of a diabetes search,
the table is queried by a SQL WHERE expression: term LIKE %dia-
betes%. Suppose the user’s entered term contains multiple terms. In
that case, the terms are split by space and concatenated by AND
operations, e.g., diabetes mellitus is translated into a SQL WHERE
expression like term LIKE %diabetes% AND term LIKE %mellitus%.
This strategy ensures that all entered terms are contained, but the
order is not essential, making the translation easier to use, and
in some cases, more robust, e.g., it does not matter whether the
user searches for diabetes mellitus or mellitus diabetes. We created
a trigram-based index to accelerate LIKE searches in the database.
Second, we introduce a so-called translation score to represent how
well a translated concept might represent the user’s intended con-
cept search. If the user input directly matches a synonym, it is
considered a perfect concept translation. Otherwise we measured
the string similarity of the user’s input and the concept term.

3.2 GraphRank

Next, we introduce our graph-based ranking method GraphRank.
Due to alternative concepts in the query expansion, a document
graph might thus match with different graph parts (different sub-
graphs), e.g., one match might include Diabetes Mellitus type 1 and
another type 2. The function matches(q, d) computes all distinct sub-
graph isomorphisms between the query g and the document graph
of d. Each subgraph isomorphism maps a part of the document
graph to the query. We call that matching part fragment, i.e., given
a query ¢, a document d, and a fragment f € matches(q,d). The
function edges(f) returns edges of the fragment f, and nodes(f)
returns the nodes of f. In other words: A fragment is a subgraph
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of the document graph that matches the query. Please note that a
document can have multiple fragments because different document
graph concepts can match the same query.

Features. GraphRank uses four features for ranking. In brief:
(confidence) Each statement comes with a certain extraction confi-
dence, i.e., how sure the system is about the statement’s extraction.
(tf-idf) Each statement has a certain tf-idf value, i.e., how often
the statement is mentioned within an abstract versus how frequent
the statement is across the whole document collection. The more
frequent a statement appears and the more special it is with re-
gard to the whole collection the better is its relevance. (coverage)
Statements are interactions between concepts. Concepts might be
mentioned as a side note in some abstract or are used across the
whole abstract. Coverage measures the ratio of text that involves the
corresponding concept, i.e., its last text position minus its first text
position. (relational similarity) Confidence, tf-idf and coverage
now allow us to score each document’s edge. The neighborhood of
some edge, i.e., all edges that are incoming or outgoing to the edge’s
subject and object could have an influence of the overall relevancy.
We used the neighborhood to determine a relational similarity.

Fragment translation score. Concepts have a translation score,
i.e., how well they represent the user’s input (remember, users
enter terms, not concept identifiers). Next, we define how well
a fragment represents the user’s intended information need. A
translated fragment close to the user’s input is ranked higher. The
translation score for a fragment f is defined as:

translation(f) = min({translation_score(c) | ¢ € nodes(f)}) (1)

Weighting. Some strategies come with scores between 0 and 1,
while others, e.g., tf-idf, may yield scores above 1.0. Given a doc-
ument set D, to rank, we normalize all scored fragments by their
maximum score for each of our previous strategies. Let D, be the set
of all documents to rank, f be the matching fragment of document
d and d the actual document to rank. We combine our four similari-
ties sim = [confidence, min_tfidf, coverage, relational_similarity] by
weighting each one through a vector W = [wy, wa, w3, wg] with
w;i € [0,1] and w1 + wy + w3 + wg = 1.

fscore(f,d) = translation(f,d) - Z wj - sim;(f,d) 2)

w,eW

Document scoring. Each document graph might have multiple
fragments that match the initial query. We compute each fragment’s
score. Here, we multiply the fragment’s score with its translation
score. We then select the best-scored fragment to represent the
overall document score for a document d:

GraphRank(q, d) = max({fscore(f,d) | f € matches(q,d)}) (3)

3.3 Query Relaxation

Partial Matches. The retrieval system enforces that relevant docu-
ments must match the full graph query (Full Match). We implement
a Partial Match strategy as an extension for our discovery system,
i.e., documents that matches the query partially are added to the
result list. The Partial Match strategy enforces that documents that
match the query fully are always placed before partial matches.

Ontological Expansion. Concepts in queries are by default ex-
panded by their subclasses, e.g., if users search for general diabetes,
queries will also search for particular subtypes like diabetes type
2. This decision was made when implementing our system [5] be-
cause it reflected the users’ needs. However, going upwards in an
ontology might also be helpful; for example, consider more general
forms of metabolic disease. A concept c can be generalized by the
superclass(c) relation that retrieves all direct and transitive super-
classes of c. However, each step in the ontology we make might lead
to more irrelevant results. That is why we introduce a similarity
score for expanded concepts: The more steps we take to generalize
a concept within an ontology, the less well-translated is the concept
in reflecting the query.

4 Evaluation

Our method GraphRank is designed to rank concept-centric nar-
rative query graphs in the biomedical domain. As far as we know,
graph-based biomedical document retrieval benchmarks do not
exist. That is why we decided to focus on existing biomedical
benchmarks that could be used for our purposes. For instance,
the TREC Precision Medicine Series 2017-2020 [16-19] were de-
signed as concept-centric document retrieval benchmarks. The
central problem when utilizing these benchmarks is that they ask
for keyword queries instead of graph queries. Consider, for exam-
ple, the benchmark query melanoma BRAF Binimetinib that asks
for three biomedical components. We assumed the predicate was
not given in the benchmark and allowed any predicate between
the searched concepts. With that assumption, we could generate a
graph pattern like (Cy, ?p1, C2) A (Cz, ?p2, C3) which asks for some
interaction between Cj (all translated concepts for the first compo-
nent) and Cy, and some interaction between Cz and C3. A document
then matches the query if it contains both interactions. If a query
asks for three components, we have three alternatives to connect
the different components. Finally, we can generate the following
graph query by using a logical disjunction over all three combina-
tions: [(C1, ?p1, C2) A(Ca, ?p2, C3) ]V [(Cr, ?p1, C2) A(Cr, ?p2, C3) ]V
[(C1,?p1,C3) A (Co, ?p2, C3)]. Please note that we did not adjust
the system’s concept vocabulary for this paper. Our subsequent
evaluation reveals some major limitations here, i.e., queries or terms
in queries that are not reflected in our system’s concept vocabulary.
In this paper, we focus on an evaluation based on TREC Precision
Medicine 2020 [16]. Results for TREC PM 2017-2019 [17-19] and
for TREC COVID [15] are reported in [7]. Each TREC Precision
Medicine Series topic asks for a specific type of cancer. The bench-
mark instructions state that the more precise a document’s included
cancer type corresponds to the searched one, the more relevant
it is. We used the Medical Subject Heading cancer ontology (see
https://meshb.nlm.nih.gov/record/ui?ui=D009369) to rewrite our
queries, i.e., we expand specific cancer types to general ones.

4.1 Results

Parameters. For our evaluation, we used equal weights for our
GraphRank method, i.e., w; = 0.25. We set predicate specificity
score (see tf-idf score) based on each predicate’s hierachical level
in our three-level predicate taxonomy (most-specific predicates
received a score of 1.0, one level higher 0.5, and the highest level
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Table 1: Evaluation results of TREC-PM2020 [16] (based on 31 out of 31 topics): Recall, nDCG@k and P@k are reported at
different ranks. We show the results of the Old System, GraphRank in different combinations and BM25.

Ranking Method Recall@1000 nDCG@10 nDCG@20 nDCG@100 P@10 P@20 P@100
Old System [5] 0.31 0.37 0.37 0.36 0.42 0.38 0.21
Full Match 0.31 0.37 0.37 0.36 0.42 0.38 0.22
+ Grathank 0.31 0.42 0.41 0.38 0.45 0.40 0.22
+ BM25 0.31 0.46 0.43 0.40 0.45 0.39 0.22
+ Ontology 0.45 0.33 0.33 0.37 0.41 0.36 0.24
+ Ontology + Grathank 0.45 0.44 0.43 0.43 0.48 0.42 0.25
+ Ontology + BM25 0.45 0.47 0.46 0.45 0.47 0.42 0.25
Partial Match 0.78 0.40 0.42 0.48 0.46 0.42 0.29
+ Grathank 0.78 0.50 0.49 0.50 0.55 0.47 0.28
+ BM25 0.78 0.53 0.52 0.55 0.53 0.47 0.30
+ Ontology 0.86 0.33 0.34 0.44 0.41 0.36 0.28
+ Ontology + GraphRank 0.86 0.47 0.48 0.51 0.52 0.47 0.29
+ Ontology + BM25 0.86 0.50 0.51 0.55 0.51 0.47 0.30
Native BM25 (Baseline) 0.79 0.48 0.46 0.49 0.48 0.42 0.28

(only associated) 0.25); see taxonomy at https://narrative.pubpharm.
de/help/. The idea is that the deeper a predicate is placed in our
taxonomy, the more information a predicate carries.

Baselines. We compare GraphRank to the well-known ranking
strategy BM25: First, we used BM25 to rerank the documents re-
trieved by the graph matching paradigm (BM25 Reranking). This
setup compares GraphRank to BM25 on the same set of retrieved
documents. Second, we used BM25 to retrieve and rank documents
without graph-based retrieval. This setup demonstrates how graph-
based retrieval plus ranking performs compared to pure BM25 re-
trieval (BM25 Native). We used PyTerrier [10] to implement BM25.

PM2020. We decided to ignore unjudged documents because
our goal is to extend the discovery system and not to outperform
other strategies. Many retrieved documents were not judged in
the benchmarks; see [7] for a discussion why. For PM2020, 31 out
of 31 queries had a translation score above 0.9. The results for
PM2020 are depicted in Table 1 which has four parts: 1) the old
system [5] without the improved query translation and by sorting
documents by their IDs (date) in descending order (old system), 2)
using Full Match as a matching paradigm without ranking (just
Full Match), plus ranking strategies (+GraphRank and +BM25) and
ontological query expansion (+Ontology), 3) Partial Match with-
out ranking, plus ranking and query expansion, and 4) the results
for native BM25 retrieval. We report the Recall@1000, the normal-
ized discounted cumulative gain (nDCG), and precision at different
ranks k (@10, @20, @100). In summary, the recall of the Full Match
paradigm is always below the Partial Match paradigm, which we
expected. Partial Match plus ontological expansion achieved a recall
of 0.86. In comparison, BM25 achieved a recall of 0.79. The type
of queries can explain the high recall of BM25: Queries in PM2020
ask for a specific cancer subtype. Each subtype contained a term
like cancer (e.g., ovarian cancer). If the exact form cannot be found
in documents, BM25 will also rank documents that just contain
the term cancer. In other words, BM25 performed some form of
beneficial expansion here (compare it to our ontological rewriting).

Partial Match + Ontology + GraphRank achieved a recall > 0.9 in
19 out of 31 topics, whereas BM25 achieved nine times a recall >
0.9. Concerning precision, Partial Match plus BM25 or GraphRank
achieved higher scores than native BM25 retrieval (up to 7% points
in P@10). Partial Match did not decrease the precision in compari-
son to Full Match. In contrast, it increased the precision because:
First, Partial Match puts partially matched documents behind full
matches in a result list (by definition). Second, for nine topics, Full
Match yielded less than 20 results, decreasing the precision at rank
20. For instance, if five correct matches were found but nothing
more, the precision at 20 is 0.25 by definition. Compared to perform-
ing a BM25-reranking of documents retrieved by Partial Match and
Ontology, GraphRank achieved a comparable performance (slightly
better/comparable for precision, but slightly worse for nDCG).

5 Conclusion

Benefits of graph-based retrieval, like entity-centric structured
overviews of the literature have already been discussed in the liter-
ature [5, 6]. However, practical ranking methods for such retrieval
systems, solely based on the graph-based document representation,
were yet missing. In this work, we filled that gap by proposing meth-
ods for such retrieval workflows, which opens up a space for future
research. Moreover, we proposed effective query relaxation and
ontological rewriting that can improve recall and thus help users
explore a document collection. Our methods work on an exten-
sive digital library collection with 37M documents, do not require
training data or supervision, and can be directly integrated into
an existing digital library system. If queries were concept-centric
and the system knew those concepts, our methods outperformed
BM25. However, not all information needs could be translated suc-
cessfully because concepts were missing (school closing) or lack
of expressiveness (gene modifications). Future work could tackle a
fallback mode for switching between graph-based and traditional
text-based ranking, depending on a certain information need.
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